Physical bound on the excluded-volume exponent of a polymer

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1978 J. Phys. A: Math. Gen. 11 L153
(http://iopscience.iop.org/0305-4470/11/7/004)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 18:54

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Physical bound on the excluded-volume exponent of a polymer

Theo Odijk
Department of Physical Chemistry III, Gorlaeus Laboratories, University of Leiden, Leiden, The Netherlands

Received 24 April 1978

Abstract

A simple physical argument restricts the value of the excluded-volume exponent ν of a polymer. The result is $\nu<\frac{2}{3}$ in three dimensions.

Recently the statistical mechanics of a macomolecule in solution exhibiting the excluded-volume effect has been extensively reinvestigated (see, e.g., Yamakawa 1974, Burch and Moore 1976, McKenzie 1976, de Gennes 1977, Khoklov 1977, Schäfer and Witten 1977, Lax et al 1978, Oono and Oyama 1978, Odijk and Houwaart 1978). Nevertheless, as far as the author is aware, the following simple argument providing a bound for the excluded-volume exponent ν has not yet been presented.

Let the polymer have N Kuhn segments each of length A, and an excluded volume β between segments.
Statement 1. In the limit of a large excluded-volume parameter z, the mean-square extension length approaches a power of z :

$$
\begin{align*}
& z \sim A^{-3} \beta N^{1 / 2} \tag{1}\\
& \lim _{z \rightarrow \infty}\left\langle R^{2}\right\rangle \sim N A^{2} z^{2(2 \nu-1)} . \tag{2}
\end{align*}
$$

Statement 2. The principle of universality holds.
This means (2) is valid for a class of flexible models having a long-range excludedvolume effect. One particular model is a chain consisting of N loosely attached cylinders each of length A, each cylinder having a very small but finite thickness D (contour length $l=N A, N$ is very large, $A \gg D$). Then the excluded-volume is given by the usual Zimm expression

$$
\begin{equation*}
\beta \sim A^{2} D \tag{3}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\lim _{N \rightarrow \infty}\left\langle R^{2}\right\rangle \sim l^{2 \nu} A^{4-6 \nu} D^{4 \nu-2} \tag{4}
\end{equation*}
$$

Statement 3. For this model,

$$
\begin{equation*}
\left(\frac{\partial\left\langle R^{2}\right\rangle}{\partial A}\right)_{l}>0 . \tag{5}
\end{equation*}
$$

This can be seen as follows. Let us compare model 1 having the parameters ($A_{1}, N_{1}, D_{1} \ll A_{1}$) with model $2\left(A_{2}=2 A_{1}, N_{2}=\frac{1}{2} N_{1}, D_{1}=D_{2}\right)$. Then $\left.\left\langle R^{2}\right\rangle_{2}\right\rangle\left\langle R^{2}\right\rangle_{1}$ since we can obtain model 2 from model 1 by switching on a hypothetical, short-range repulsive potential which stiffens consecutive pairs of thin cylinders.

Therefore inequality (5) restricts ν to a narrow range.

$$
\begin{equation*}
\frac{1}{2} \leqslant \nu<\frac{2}{3} . \tag{6}
\end{equation*}
$$

Note that we have considered an extreme case for the dependence of the excluded volume on the segment length. Other models would give a more complicated dependence and inequality (5) would be difficult to prove. Finally, it is pertinent to remark that the increase in Kuhn length can actually occur, namely in the excluded-volume theory of polyelectrolytes when the salt concentration decreases (Odijk 1977, Skolnick and Fixman 1977, Odijk and Houwaart 1978).

The author thanks Professors M Mandel and P G de Gennes for stimulating conversations.

References

Burch D J and Moore M A 1976 J. Phys. A: Math. Gen. 9 435-50
de Gennes P G 1977 Riv. Nuovo Cim. 7 363-78
Khoklov A R 1977 J. Physique 38 845-9
Lax M, Barrett A J and Domb C 1978 J. Phys. A: Math. Gen. 11 361-74
McKenzie D S 1976 Phys. Rep. 27 35-88
Odijk T 1977 J. Polymer Sci. Polymer Phys. 15 477-83
Odijk T and Houwaart A C 1978 J. Polymer Sci. Polymer Phys. 16 in the press
Oono Y and Oyama T 1978 J. Phys. Soc. Japan 44 301-8
Schäfer L and Witten T A 1977 J. Chem. Phys. 66 2121-30
Skolnick J and Fixman M 1977 Macromolecules 10 944-9
Yamakawa H 1974 A. Rev. Phys. Chem. 25 179-200

